Ensemble of Face/eye Detectors for Accurate Automatic Face Detection
نویسندگان
چکیده
In this work we propose a simple yet effective face detector that combines several face/eye detectors that possess different characteristics. Specifically, we report an extensive study for combining face/eye detectors that results in a final system we call FED that combines three face detectors that extract regions of candidate faces from an image with two approaches for eye detection: the enhanced Pictorial Structure (PS) model for coarse eye localization and a new approach proposed here (called PEC) that provides precise eye localization. PEC is an ensemble that utilizes three texture descriptors: multi-resolution local ternary patterns, local phase quantization descriptors, and patterns of oriented edge magnitudes. The extracted features are coupled with support vector machines trained on eye and non-eye samples to perform classification. The proposed framework for face detection could be considered an ad hoc integration of existing methods (the three face detectors and the PS coarse eye detector) that is combined with the proposed novel ensemble for precise eye localization (PEC). The aim of this approach is to maximize performance (not computation time). The quality of the proposed system is validated on three datasets (the well-known BioID and FERET datasets as well as a self-collected dataset). To the best of our knowledge, our system is one of the first fully automatic face detection approaches to obtain an accuracy of almost 100% on the BioID dataset (the most important benchmark dataset for frontal face detection) and 99.1% using the same dataset with only 12 false positives. A MATLAB version of our complete system for face detection can be downloaded from https://www.dei.unipd.it/node/2357.
منابع مشابه
A New Method for Eye Detection in Color Images
The problem of eye detection in face images is very important for a large number of applications ranging from face recognition to gaze tracking. In this paper we propose a new algorithm for eyes detection. First, the face region is extracted from the image by skin-color information. Second, horizontal projection in image is used to approximate region of the eye be obtained . At last, the eye ce...
متن کاملA New Method for Eye Detection in Color Images
The problem of eye detection in face images is very important for a large number of applications ranging from face recognition to gaze tracking. In this paper we propose a new algorithm for eyes detection. First, the face region is extracted from the image by skin-color information. Second, horizontal projection in image is used to approximate region of the eye be obtained . At last, the eye ce...
متن کاملFacial Expression Recognition Based on Anatomical Structure of Human Face
Automatic analysis of human facial expressions is one of the challenging problems in machine vision systems. It has many applications in human-computer interactions such as, social signal processing, social robots, deceit detection, interactive video and behavior monitoring. In this paper, we develop a new method for automatic facial expression recognition based on facial muscle anatomy and hum...
متن کاملImpact of eye detection error on face recognition performance
The locations of the eyes are the most commonly used features to perform face normalization (i. e., alignment of facial features), which is an essential preprocessing stage of many face recognition systems. In this paper, we study the sensitivity of open source implementations of five face recognition algorithms to misalignment caused by eye localization errors. We investigate the ambiguity in ...
متن کاملCombining information in a Bayesian network for face detection
Face detection has been an important research topic over the last 20 years. It is commonly used as a first step in face recognition and several techniques were applied in face detection, going from geometrical methods such as model matching to connectionist methods such as neural networks. This work presents a face detection system that uses a Bayesian network to combine information from differ...
متن کامل